

Canada's national laboratory for particle and nuclear physic Laboratoire national canadien pour la recherche en physique nucléair et en physique des particule

UCx03 @ 10 µA

UCx @ 10 µA preparations Target development and target fabrication Yield Station Yields Mg Isotopes Post-irradiation RIB

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

10 µA Upgrade

Preparations began in April 2010:

- upgrades of target hall filtration system and various safety systems
- CNSC licence amendment
- Target fabrication and characterization
- UCx target run at 2 µA

MAJOR MILESTONES: UCx target (10 µA / 5000 µAh)

Description		Date
Determine upgrades required for 10 uA Operation	Safety/RPG, Mech. Services,	15/05/2011
	Targets/Ion Sources	
Completion of Safety Analysis Report (SAR) for 10uA	Safety/RPG	19/08/2011
Operation		
Completion of Safety Committee Review of SAR	Safety/RPG	29/08/2011
Submission of SAR to CNSC in support of licensing	Safety/RPG	02/09/2011
amendment for 10 μ A Operation and request for first 10uA run		
in Dec 2011		
Complete response to CNSC on SAR for 10 uA operation	Safety/RPG	01/10/2011
Target material production complete	Targets/Ion Sources	01/10/2011
Complete upgrades including target hall filter system	Safety/RPG, Mech. Services,	15/10/2011
	Controls, Targets/Ion Sources	
Preparations for Radiation safety monitoring complete	RPG, Vacuum, Controls	15/10/2011
(vacuum bypasses, gas sampling)		
Completion of target assembly, testing and conditioning	Targets/Ion Sources	01/11/2011
Target ready for hot cell	Targets/Ion Sources	08/11/2011
License amendment for 10uA operation approved	Safety/RPG	15/11/2011
Begin UCx run at 10 µA	Targets/Ion Sources, Operations,	01/12/2011
	Science Div.	
North Hot Cell completion	Targets/Ion Sources	01/04/2012

Carbothermal reduction

05/03/2012

UC_x Target Discs

- UCx slurry is poured on graphite foil
- Stacks of stamped-out target disks are loaded into the tantalum target container and sintered in-situ

- raw UCx oxidizes on air and decomposes in water
- sintered UCx: no significant oxidation on air or decomposition in water observed

UC_x: Charcterizaion

- target material properties:
 - density, thickness, grain size, porosity
 - thermal conductivity
 - impurities, carbon content

UC_x: SEM pictures

UC_x after carbonization procedure

10 µm

Sintered UCx on target disc)

05/03/2012

2-Theta - Scale

7

7(

UC_x: L-edge densitometry

L-edge densitometry for uranium was developed at the Institute for Trans-Uranium Elements (ITU, Karlsruhe) as support to international nuclear safeguards authorities (IAEA, Euratom).

ZrC target foil thickness measurements:

	mg/cm ²	Uncertainty (1σ)
ZrC-1	71.898	0.45 %
ZrC-2	62.568	0.28 %
ZrC-3	52.942	0.21 %
ZrC-4	66.32	0.44 %

March 2012: Application to UCx target foils at TRIUMF

ISAC Yield Station

- tape station
- γ-spectroscopy (HPGe)
- β-decay (4 plastic scintillators)
- α-spectroscopy (PIN diodes)
- event-by-event data acquistion
- fully remote controlled

Yield Station DAQ

Yield Station Data Analysis Tools

WTRIUMF

Na Yields

R TRIUMF

RIUMF

K Yields

CTRIUMF

Ga Yields

RIUMF

Rb Yields

CTRIUMF

Sr Yields

RIUMF

Y Yields

At Yields

Ra Yields

RIUMF

Ac Yields

WTRIUMF

Neutron-rich Mg and descendants

5	σ 0.46 σ _{n. α} 0.12		07.0.0				8-	0.03	
<0.0005	σ _{n, p} 0.002	σ 0.25	β 0.2 no γ	σ 0.24	β ⁻ 1.8; 4.9 γ 3103	β ⁻ 1.0; 2.9	γ 1301; 1697;	γ212; 677;	β- γ1
P 31 100	P 32 14.26 d	P 33 25.34 d	P 34 12.4 s	P 35 47.4 s	P 36 5.6 s	P 37 2.31 s	P 38 0.64 s	P 39 0.28 s	βn
7	β 1.7 no γ	β 0.2 no γ	β 5.4 γ 2127	β ⁻ 2.3 γ 1572	β γ 3291; 903; 1638; 2540	β ⁻ γ 646; 1583; 2254	β ⁻ γ 1292; 2224; 3516	β γ 340 - 1525 βn	β γ9 34
si 30 8.092	Si 31 2.62 h	Si 32 172 a	Si 33 6.18 s	Si 34 2.77 s	Si 35 0.78 s	Si 36 0.45 s	Si 37 90 ms	Si 38 >1 µs	-
07	β 1.5 γ (1266) σ 0.073	$\beta^{-} 0.2$ no γ $\sigma < 0.5$	β 3.9; 5.8 γ 1848	β 3.1 γ 1179; 429; 1608	β γ 4101; 2386; 3860; 241	β γ 175; 250; 878; 425	β- βn	β ⁻ ? βn ?	β ⁻ βn
Al 29 5.6 m	Al 30 3.60 s	Al 31 644 ms	AI 32 33 ms	AI 33 41.7 ms	Al 34 56.3 ms	Al 35 38.6 ms	Al 36 90 ms	Al 37 10.7 ms	
5 '3; 2426; 	β 5.1; 6.3 γ 2235; 1263; 3498	β 5.6; 7.9 γ 2317; 1695	β γ 1941; 3042; 4230	β ⁻ βn γ 1941*; 4341; 1010	β ⁻ 12.8 γ 729; 3326; 124; 4257 βn	β 13.3; 14.2 γ 64; 910; 3326* βn	β βn	β-	B-
1g 28 20.9 h	Mg 29 1.30 s	Mg 30 335 ms	Mg 31 230 ms	Mg 32 120 ms	Mg 33 90 ms	Mg 34 20 ms	Mg 35 70 ms	Mg 36 3.9 ms	1
5; 0.9 1342; 942	β 4.3; 7.5 γ 2224; 1398; 960	β 6.1 γ 244; 444	β [—] γ 1613; 947; 1626; 666 βn	β γ 2765; 736; 2467 βn	g- gn	β βn	β βn	β-	β ⁻ βn
la 27 04 ms	Na 28 30.5 ms	Na 29 44.9 ms	Na 30 48 ms	Na 31 17.0 ms	Na 32 13.5 ms	Na 33 8.2 ms	Na 34 5.5 ms	Na 35 1.5 ms	1
.0 5; 1698).46	β 13.9 γ 1474; 2389 βn	β 10.8; 13.4 γ 55; 2560; 1474* βn 4.13; 1.70	β 12.2; 15.7 γ 1482; 1040*; 1978 βn; β2n; βα	β 15.4 γ 51; 1482*; 2244 βn 0.08; 0.51 β2n	β 5 886; 2153 βn; β2n	β βn; β2n γ 886*; 547; 1243	β βn; β2n γ 886*	β βn	n ?
Ne 26 97 ms	Ne 27 31.5 ms	Ne 28 20.0 ms	Ne 29 15.8 ms	Ne 30 5.8 ms	Ne 31 3.4 ms	Ne 32 3.5 ms	Ne 33 <260 ns	Ne 34 >1.5 μs	
3; 233	β 12.6 γ 63; 3019; 2736; 2225 βn	β 12.2 γ 2063; 863 βn; β2n	β 15.3 γ 72; 1516; 1249; 1588 βn; β2n	β γ 151 βn	р- рл ?	β βn ?	n ?	β ? βn ?	
F 25	E 26	E 27	F 28	F 29	F 30	F 31			

³⁵Mg half-life

³⁴Mg half-life

/home/pkunz/data/ITW-TM1-UCx03-SIS/Mg33_05.mid.gz (Ch 4)

RIUMF

³³Mg γ-lines

	Energy [keV]	Net Counts	rel. Intensity	
32AI	690	.46	127	
32AI	2762	.41	498	
32Si	1941	.69	547	
32Si	3042	.17	141	
33AI	594	.93	476.5	
33AI	1046	.48	433	
33AI	1618	.11	1959.5	1.000
33AI	1647	.31	530.5	0.274
33AI	1837	.45	515	0.287
33AI	2097	.36	959	0.587
33AI	2365	.52	430	0.286
33AI	2691	.98	87	0.063
33AI	289	3.4	169	0.130
33AI	3707	.34	149.5	0.137
33AI	4729	.81	709	0.775
33AI 4621 Esc	4109	.62	68	
33AI 4730 Esc	4218	.95	332	
33P	415	.34	1651.5	
33P	143	1.3	1239	
33P	1642	.51	121	
33P	1847	.29	7659	
33P	2538	.05	521.5	
33P	2615	.02	311.5	
Half-life < 100 ms	222	.99	1259	0.187
Half-life < 100 ms	434	.51	145	0.031
Half-life < 100 ms	1193	.93	249.5	0.103
Half-life < 100 ms	1789	.93	149.5	0.082
Half-life < 100 ms	189	0.7	61.5	0.035
Half-life < 100 ms	263	4.3	63	0.045
Half-life < 100 ms	2645	.46	73	0.053
Half-life < 100 ms	2769	.78	69	0.051
Half-life < 100 ms	2784	.43	208	0.155
Half-life < 100 ms	3187	.13	141	0.116
Half-life < 100 ms	3600	.03	79	0.071
Half-life < 100 ms	4590	.89	125	0.134
Half-life < 100 ms	4621	.21	235.5	0.253
Half-life < 100 ms	4827	.82	105	0.117
Half-life < 100 ms	5340	.45	98	0.117

Time [s]

³⁴Mg y-lines

Energy	[keV]	Net Counts	rel. Intensity
	1846.61	169.5	•
	428.44	291	
	1177.78	209.5	•
	1607.37	54	
	2126.43	65	•
	363.36	348.5	0.688
	413.79	83.5	0.178
	423.66	95	0.205
	440.37	194.5	0.430
	974.45	119.5	0.440
	1051.47	99.5	0.386
	1192.61	97	0.410
	2812.81	24	0.184
	3323.95	115.5	1.000
	148.12	164.5	
	185.24	194	
\sim	238.64	156	j
	295.05	66	j
	351.36	136	i
	510.14	2119)
	569.59	65.5	
	582.8	83.5	
	910.22	95	
	1076.11	484	
	1119.21	46	i
	1763.46	68.5)

Mg half-lives (summary)

m/q	lsotope	T _{1/2} [ms] Exp.	T _{1/2} [ms] Lit ¹ .	
29	²⁹ Mg	1168 (2)	1300	¹ Karlsruher Nuklidkarte
30	³⁰ Mg	327 (1)	335	
	³⁰ AI	3340 (50)	3600	² Nucl. Phys. A734 (2004) 369
31	³¹ Mg	280 (1)	230	
	³¹ AI	666 (4)	644	
32	³² Mg	82.2 (4)	120, 86(5) ²	
	^{32,31} Al	33, 644 (fixed)	33, 644	
33	³³ Mg	95.5 (3)	90.5	
	^{33,32} Al	37.4 (6)	41.7, 33	
34	³⁴ Mg	47 (1)	20	- Total
	^{34,33} Al	21 (1)	56.3, 41.7	51.8012
35	³⁵ Mg	14 (3)	70	a E calle
	^{35,34} Al	52 (10)	38.6, 56.3	
March 5, 2012			1707	30

Post-irradiation RIB

 223 Ra $10^{8}/s$ Yields approx. 2 weeks after end of run 224 Ra $10^{7}/{\rm s}$ ^{225}Ac $10^{7}/{\rm s}$ ADC1 Events 0009 5000 ²²³Ra decay (α) 4000 3000 2000 1000 0 L 7000 4000 4500 5000 5500 6000 6500 Energy [keV]